
Polynomial Trajectory Planning for Quadrotor Flight

Charles Richter, Adam Bry and Nicholas Roy

Abstract— We explore the challenges of planning trajectories
through complex environments for quadrotors. We use the
RRT* algorithm to generate an initial route through a 3D
environment and then construct a trajectory consisting of a
sequence of polynomial spline segments to follow that route.
We present a method of jointly optimizing polynomial path
segments that is numerically stable for high-order polynomials
and large numbers of segments, and is easily formulated for
efficient sparse computation. Using a differentially flat repre-
sentation of the quadrotor, these polynomial trajectories encode
the complete dynamics of the vehicle and allow calculation of
feed-forward control commands in closed form, eliminating
the need to sample in a high-dimensional state space or
carry out expensive dynamics simulations during planning. Our
approach generates high-quality trajectories much faster than
purely sampling-based kinodynamic planning methods, but
sacrifices convergence to the global optimum. We demonstrate
the performance of our algorithm by efficiently generating a
trajectories through challenging indoor spaces and successfully
traversing them at speeds up to 8m/s.

I. INTRODUCTION

Recent advances in small unmanned aircraft have enabled
precise, dynamic flight maneuvers in indoor environments
[1], [2], [3]. Simultaneously, advances in fast, accurate
state estimation methods have enabled these vehicles to fly
through dense, cluttered spaces without the need for a motion
capture system [4]. These capabilities together motivate the
challenge addressed in this paper, which is to efficiently
generate trajectories for agile quadrotor flight through maps
of real-world environments.

While there exist advanced techniques for robotic naviga-
tion and trajectory optimization, there has yet to emerge a
single algorithm that can both find and optimize a quadrotor
trajectory through a complex real-world environment quickly
enough to be useful for a deployable robotic system. While
algorithms such as RRT* provably converge to the optimal
solution in the limit of infinite samples, it is often impractical
to rely on this limit to perform optimization for vehicles
with nonlinear 12-DOF dynamics. These algorithms have
been most successful for simple Dubins-vehicle or double-
integrator systems where analytical techniques can be used
to steer between two points in state space [5]. For other
systems, the search over dynamically feasible trajectories
often requires iterative simulation of the equations of motion.

Nonlinear programming techniques for trajectory opti-
mization, such as direct collocation and shooting methods,
can also be used to find optimal paths for systems with gen-
eral dynamics. However, these methods are computationally
intensive and often require accurate analytical representations
of all environmental constraints in order to compute cost
gradients with respect to obstacles. These limitations make

Fig. 1: Automatically generated 3D trajectory navigating a
real-world environment with closely-spaced obstacles.

them impractical when constraints are represented in the
form of an occupancy map.

Nevertheless, an explicit optimization step is useful
for high-speed trajectories through cluttered environments.
Minimum-snap polynomial splines have proven very effec-
tive as quadrotor trajectories, since the motor commands and
attitude accelerations of the vehicle are proportional to the
snap, or forth derivative, of the path [6]. Minimizing the
snap of a trajectory quantifies a notion of “smoothness” that
is desirable for maintaining the quality of onboard sensor
measurements as well as avoiding paths that would require
abrupt or excessive control inputs.

The differentiability of polynomial trajectories makes them
a natural choice for use in a differentially flat representation
of the quadrotor dynamics. Differential flatness provides an
analytical mapping from a path and its derivatives to the
states and control input required to follow that path. This
powerful property effectively guarantees feasibility of any
differentiable trajectory, provided that its derivatives are suf-
ficiently bounded to avoid input saturation, thus eliminating
the need for iterative simulation in the search for trajectories.

A. Problem Statement

Given a 3D occupancy map of an environment, we wish to
efficiently compute feasible, minimum-snap trajectories that
follow the shortest route from start to goal utilizing the full
dynamic capabilities of the quadrotor.

B. Solution Outline

While it may be possible to compute quadrotor trajectories
using existing methods of sampling-based kinodynamic plan-
ning or trajectory optimization, we find that these methods
are inefficient or impractical in complex real-world environ-
ments for the reasons listed above. Instead, our solution to

this problem is to utilize the RRT* algorithm to find a route
through the environment, initially ignoring the dynamics of
the vehicle. That route is pruned to a sequence of waypoints
representing the optimal route through the visibility graph of
the environment. Then, a sequence of polynomial segments
is jointly optimized to join those waypoints into a smooth
minimum-snap trajectory from start to goal. Utilizing a
differentially flat model of the quadrotor and the associated
control techniques, we can follow these paths precisely.

The paper proceeds as follows. We first discuss the
differentially flat quadrotor model and its implications for
planning and polynomial trajectories. We then present a
closed-form solution to the quadratic program (QP) used to
obtain the polynomial trajectory that is numerically stable for
both high-order polynomials and large numbers of segments.
For comparison with purely sampling-based approaches, we
compare our process with an RRT* algorithm that uses
polynomial segments to grow a tree of candidate trajectories
(i.e., as its steer function to connect sampled points in state
space). We show that our process returns superior paths
in much shorter running time. Finally, we highlight the
performance of our QP formulation and show the results of
flight tests in real-world environments.

II. QUADROTOR DYNAMICS AND CONTROL

In order to guarantee that we can precisely follow the
polynomial trajectories we intend to generate, we utilize the
property of differential flatness for the standard quadrotor
equations of motion:

mr̈ = mgzW − f zB (1)

ω̇ = J−1 [−ω× Jω +M] (2)

Differential flatness of this model was demonstrated in [6].
Here, r is the position vector of the vehicle in a global
coordinate frame, ω is the angular velocity vector in the
body-fixed coordinate frame and f and M are the net thrust
and moments in the body-fixed coordinate frame. J and m are
the inertial tensor and mass of the quadrotor. zB is the unit
vector aligned with the axis of the four rotors and indicates
the direction of thrust, while zW is the unit vector expressing
the direction of gravity. There exists a simple mapping from
f and M to the four desired motor speeds.

A polynomial trajectory segment is in fact three polyno-
mial functions of time specifying the independent evolution
of the so-called flat output variables, x, y, and z between two
positions in 3D space. The nonlinear controller employed to
follow differentiable trajectories was developed in [7], and
consists of independent calculations for thrust and moments:

f =(−kxex− kvev +mgzW +mr̈d) ·Rzw (3)
M =− kReR− kω eω +ω× Jω

− J(ω̂RT Rdωd−RT Rdω̇d)
(4)

where ex,ev,eR, and eω are the error vectors in position,
velocity, orientation and angular velocity, kx,kv,kR, and kω

are associated control gains, and R is the rotation matrix
representing the orientation of the quadrotor.

This control system has several unique features that over-
come the limitations of linear models and feedback-only
control design. First, it uses a rotation matrix to express
orientation without small-angle approximations, allowing
large deviations from the horizontal hover regime. Second,
the controller includes feed-forward terms that supply the
appropriate force and moment, computed analytically from
the derivatives at every point along the trajectory. Similar
to model-predictive approaches, feed-forward control elimi-
nates the lag incurred by following a moving set point using
feedback alone. A transport map is used to map feed-forward
commands appropriately from the desired body frame into
the true body frame if the quadrotor deviates from the desired
trajectory during flight. Finally, proportional-derivative (PD)
control terms are included to stabilize the position and
orientation about the moving reference along the trajectory.

The intuition behind differential flatness lies in the fact
that the quadrotor must always align its axis of thrust with
the total acceleration vector prescribed at every point along
the trajectory, thus determining its exact orientation and
required control inputs. In principle, if the model were a
perfect representation of the dynamics, and in the absence
of disturbances, the feed-forward control effort would carry
the quadrotor precisely along the trajectory. Since the desired
trajectory and its derivatives are sufficient to compute the
states and control inputs at every point along the path in
closed form (equations 3-4), it effectively serves as a simu-
lation of the vehicle’s motion. This is the powerful feature
of the quadrotor’s differentially flat model that eliminates
the need for accurate numerical integration of equations of
motion, or a search over the space of inputs during each
iteration of the planning algorithm.

III. POLYNOMIAL TRAJECTORY OPTIMIZATION

We now develop an analytical method for generating
minimum-snap polynomial trajectories to be followed by a
quadrotor using the control techniques outlined above. We
assume that we have obtained a sequence of waypoints in
3D space representing the optimal path through the visi-
bility graph of the environment, and we wish to generate
a minimum-snap polynomial path passing through each of
those waypoints. For this purpose, we use a simple RRT*
algorithm to obtain the optimal straight-line path from start
to goal, and then select waypoints from that optimal path
according to a line-of-sight technique. Figure 3b shows the
sequence of waypoints obtained by this method.

The choice of polynomial trajectories is natural for highly
dynamic vehicles and robots since these trajectories can be
obtained efficiently as the solution to a quadratic program
that minimizes a cost function of the path derivatives.
This optimization framework allows the endpoints of path
segments to be optionally fixed to desired values or left
free, and the polynomials can be jointly optimized while
maintaining continuity of the derivatives up to arbitrary
order. Maintaining continuity of derivatives ensures smooth
motions and can be used to generate trajectories that do not
require step inputs to the vehicle’s actuators.

Polynomial trajectories allow for a analytical solution via
elimination as a constrained QP [8]. While this method
is acceptable for joint optimization of a few segments, it
involves the inversion of matrices that may be very close to
singular, along with high sensitivity to coefficients on the
order of 10−20 or smaller, leading to inaccurate results. We
present this constrained QP solution here and then use it in
the following section as the basis for an unconstrained QP
reformulation, which is robust to numerical instability.

For the following derivations, we require that the vector
of segment times is fixed. That is, we require an a priori
selection of the amount of time required to traverse between
one waypoint and the next. These times can be selected
approximately based on a desired average speed of the
vehicle, however in general an arbitrary selection of times
will not yield the lowest-cost solution. Therefore, we relax
this assumption in a subsequent section where we iteratively
refine the vector of times.

A. Cost Function for Minimizing Derivatives

For quadrotors, a single trajectory segment between two
points in state space is composed of independent polynomial
trajectories for the flat output variables x, y, z and yaw angle.
Following the formulation in [9], each polynomial segment
is represented as:

P(t) = pntN +Pn−1tN−1 + · · ·+ p0 =
N

∑
n=0

pntn (5)

The cost function for optimization of each polynomial is:

J =
∫ T

0
c0P(t)2+c1P′(t)2+c2P′′(t)2+. . .+cNP(N)(t)2dt (6)

where T is the traversal time for the trajectory segment. To
solve for a minimum-snap trajectory, c4 would be nonzero
while all other coefficients would be set to zero. This function
can be written in matrix form as:

J = p̄T Qp̄ (7)

where p̄ is a vector of polynomial coefficients and Q is a
cost matrix constructed as the weighted sum of Hessian ma-
trices for each of the polynomial derivatives. These Hessian
matrices will be derived by writing the cost function in terms
of the polynomial coefficients and then differentiating twice
with respect to those coefficients. Since we are optimizing
the integral of squares of derivatives, we begin by writing
the square of the polynomial as a convolution sum:

(P2)n =
N

∑
j=0

p j pn− j (8)

where (P2)n is the nth coefficient of the squared polynomial.
The rth derivative of a polynomial is:

P(r)(t) =
N

∑
n=r

(
r−1

∏
m=0

(n−m)

)
pntn−r (9)

Hence, the component of the cost function associated with
the rth derivative is:

Jr =
∫ T

0
P(r)(t)2dt (10)

=
2N

∑
n=0

N

∑
j=0

(
r−1

∏
m=0

(j−m)(n− j−m)

)
p j pn− j

T n−2r+1

n−2r+1
(11)

Computation of the Hessian begins by differentiating Jr.

∂Jr

∂ pi
=

2N

∑
n=0

N

∑
j=0

(
r−1

∏
m=0

(j−m)(n− j−m)

)

·
(

∂ p j

∂ pi
pn− j +

∂ pn− j

∂ pi
p j

)
T n−2r+1

n−2r+1

(12)

=2
2N

∑
n=0

(
r−1

∏
m=0

(i−m)(n− i−m)

)

· pn−i
T n−2r+1

n−2r+1

(13)

Then differentiating again with respect to each of the poly-
nomial coefficients yields:

∂ 2Jr

∂ pi∂ pl
=2

2N

∑
n=0

(
r−1

∏
m=0

(i−m)(n− i−m)

)

· ∂ pn−i

∂ pl

T n−2r+1

n−2r+1

(14)

=2

(
r−1

∏
m=0

(i−m)(l−m)

)
T i+l−2r+1

i+ l−2r+1
(15)

Finally,

Qil
r =

{
2
(
∏

r−1
m=0(i−m)(l−m)

) T i+l−2r+1

i+l−2r+1 if i≥r∧l≥r
0 if i<r∨l<r

(16)

where the complete cost matrix Q is given by:

Q =
N

∑
r=0

crQr (17)

and cr is the user-specified penalty on the rth derivative of
the trajectory.

B. Constraints

The constraints on the the endpoints of a polynomial
segment, which are used to either fix a given derivative to
a desired value or ensure continuity of free derivatives, are
imposed as a linear function of the coefficients:

Ap̄−b = 0 (18)

A =

[
A0
AT

]
, b =

[
b0
bT

]
(19)

where A is constructed by evaluating the component of the
derivative in equation 9 corresponding to the the appropriate

coefficient:

A0rn =

{
∏

r−1
m=0(r−m) if r = n

0 if r 6= n
(20)

b0r = P(r)(0) (21)

ATrn =

{(
∏

r−1
m=0(r−m)

)
T n−r if n≥ r

0 if r < n
(22)

bTr = P(r)(T) (23)

These constraints either fix the position, velocity, accelera-
tion, and higher order derivatives to desired values, or allow
them to float subject to minimization of the cost function.
Having assembled Q, A and b, the QP can now be written:

min
p̄

p̄T Qp̄ (24)

s.t. Ap̄−b = 0 (25)

where the decision variables are the coefficients of the poly-
nomial trajectory. This optimization problem can be solved
in a straightforward manner using an elimination approach.
The joint optimization of multiple segments is accomplished
by concatenating individual segment optimization problems.

C. Reformulation as an Unconstrained QP

While the method above works well for single segments
and small joint optimization problems, the matrices involved
quickly become ill-conditioned for larger joint optimization
problems of more than a few segments, for polynomials of
higher order, and for problems in which the traversal time
for segments varies widely. To avoid ill-conditioning, we
reformulate the problem as an unconstrained QP to solve
for endpoint derivatives directly as the decision variables,
rather than the indirect method of solving for polynomial
coefficients. In practice, this method has proven substantially
more stable than the method above, allowing the joint opti-
mization of at least 50 polynomial segments in a single ma-
trix operation without encountering numerical issues. Once
the optimal waypoint derivatives are found, the minimum-
order polynomial connecting each pair of waypoints can be
obtained by inverting the appropriate constraint matrix.

Beginning with the original cost function:

J = p̄T Qp̄ (26)

we utilize the A matrix as a mapping between polynomial
coefficients and the endpoint derivatives:

d̄ = Ap̄ =

[
A0
AT

]
p̄ (27)

and therefore the cost function for a single polynomial
segment becomes:

J = d̄T A−T QA−1d̄ (28)

At this stage it is convenient to discuss the joint optimization
problem as the general formulation encompassing the solu-
tion of a single polynomial segment. Given an initial state,

a final state, and a sequence of intermediate waypoint loca-
tions, we wish to find the waypoint velocities, accelerations,
and higher order derivatives such that the minimum-order
polynomials connecting those waypoints will minimize the
cost function above.

In the case of a joint optimization, we construct a Q joint
and A joint matrices, which are simply block diagonal matri-
ces composed of the Q and A matrices for the individual
segment subproblems. The derivatives involved in the joint
optimization are concatenated into a vector D. Typically,
D will include a full set of derivatives to be fixed at the
beginning and end of the trajectory (i.e., begin and end with
zero velocity, acceleration, etc.) along with the derivatives
to be fixed at the waypoints (i.e. positions), however this
formulation is easily adapted to fix or float any of the
derivatives. We sort D into a block of derivatives to be fixed
in the optimization (DF) and a block of free derivatives we
intend to optimize (DP).

D =

[
DF
DP

]
(29)

We then rely on a selector matrix M to map the derivatives
in D to an arrangement that is consistent with the sequence
of block-diagonal elements in A joint . In particular, since each
block-diagonal element of A joint represents the optimization
of a single segment, the M matrix also serves to duplicate
each intermediate waypoint derivative value to appear both
at the end of one segment and at the beginning of the
subsequent segment, therefore maintaining continuity of the
derivatives.

We now have the following total cost function for the joint
optimization:

J =

[
DF
DP

]T

MA−T QA−1MT
[

DF
DP

]
(30)

Let R denote the new augmented cost matrix:

R = MA−T QA−1MT (31)

Note that by formulating the problem with the waypoint
derivatives as the decision variables, our constraints are now
embedded within the cost function yielding an unconstrained
optimization problem.

We proceed by partitioning R according to the number
of fixed and free derivatives and then expanding the cost
function:

R =

[
RFF RFP
RPF RPP

]
(32)

J = DT
F RFF DF +DT

F RFPDP +DT
PRPF DF +DT

PRPPDP (33)

where the first term is simply a fixed cost incurred by
satisfying the fixed derivatives. Differentiating J with respect
DP and equating to zero yields the optimal values for the free
derivatives:

D∗P =−R−1
PPRT

FPDF (34)

These optimal waypoint derivatives imply the minimum-
order polynomial segments needed to construct the complete
trajectory.

D. Time Allocation
Until this point in our optimization process, we have been

required to fix an arbitrary amount of time associated with
each segment in the complete trajectory since these times
factor into the construction of the cost matrix. These segment
times act as constraints on the solution quality, but can be
allowed to vary to improve the overall solution. We therefore
choose initial segment times and then iteratively refine the
times in order to obtain better paths with respect to the cost
function. We propose a simple extension of the polynomial
cost function to choose segment times and thus determine
the total trajectory traversal time. We attempt to minimize:

JT = p̄T Qp̄+ kT T (35)

where T is the sum of segment times for the complete path
and kT is a user-specified penalty on time. The first term
in this cost function is simply the original cost function for
polynomial optimization. When penalizing only acceleration,
jerk or snap, this original cost can be driven arbitrarily small
by increasing the total time. Therefore, this modified cost
performs a trade off between minimizing the polynomial cost
and traversing the path quickly. Increasing the penalty on
time, kT , results in more aggressive trajectories.

We optimize the modified cost function via gradient de-
scent where the gradient is estimated numerically by perturb-
ing each segment time by some δ t as in [6], however we do
not require that the total path time be conserved in a given
perturbation. Therefore, the path time will grow or diminish
as necessary to optimize the modified cost. Figure 2 shows
optimized trajectories for the same set of waypoints using
two different kT values. The red arrows indicate waypoint
velocities while the green arrows indicate accelerations, and
these quantities are greater in the bottom trajectory due to the
higher time penalty. The quadrotor axes are plotted at 0.1s
increments along the path. Notice also the emergent property
resulting from time allocation that the quadrotor moves very
slowly around the sharp corner (as shown by the lengths of
the red velocity vectors), but it smoothly accelerates up to a
higher speed in the straightaway where it does not incur a
severe penalty on its fourth derivative.

Fig. 2: Segment time optimization with the penalty on time
kT set at 500 (top) and 50000 (bottom). The optimal total
trajectory times are 9.1s and 5.1s respectively. Vectors for
waypoint velocity (red) and acceleration (green) are shown.

E. Ensuring Feasibility

If a particular trajectory segment is found to intersect an
obstacle after optimization, an additional waypoint is simply
added halfway between its two ends, splitting this segment
into two. This midpoint is known to be collision-free because
it lies on the optimal route through the visibility graph.
These additional waypoints are added incrementally until the
polynomial trajectory is free of collision. A similar technique
is used in [10].

IV. RESULTS

We have tested our trajectory generation process in a
variety of environments. Figures 1 and 3 show solutions to
challenging 2D and 3D problems. The use of a minimal set of
waypoints and the joint polynomial optimization described
above yields paths that are typically composed of natrual
high-speed arcs in unconstrained regions of the environment
while slowing in tight spaces to minimize accelerations
around sharp corners. Our process sacrifices convergence to
global optimality, but returns superior paths in much shorter
running times than a purely sampling-based approach.

A. Comparison with RRT* using Polynomial Steer Function

For comparison to a strictly sampling-based planning
approach, we implemented an RRT* algorithm using poly-
nomial segments as the steer function to extend the search
tree. Figure 3a shows the resulting solution. Sampling was
performed in position and velocity space. We use the distance
metric described in [11] of Euclidean distance divided by av-
erage velocity. One major difficulty with this approach is that
segment times must be fixed when generating polynomials to
extend the tree, however as discussed above, the selection of
segment time can have a dramatic impact on the quality of a
path, so an appropriate guess must be made a priori for each
segment, or the segment time must be included in the sam-
pling space. In our implementation, the segment times were
chosen as the Euclidean distance between vertices divided
by the desired average velocity along the segment. Table I

TABLE I: Comparison of our method with RRT* using the
polynomial steer function for the 2D problem in figure 3.

Runtime Jpoly. Tpath Lpath
RRT*/Poly. 120s 5.72×108 21.94s 40.35m

Our Process 3s 1.07×105 19.66s 35.51m

shows several statistics on the performance of the RRT* with
a polynomial steer function compared to our algorithm. The
RRT* runs much longer and fails to find a path as smooth or
with a cost as low as our algorithm. The path generated by
the RRT* is longer in distance and takes longer to traverse
while having a much higher cost according to the objective
function of polynomial optimization. The high cost is due to
the unnecessary accelerations and higher derivatives incurred
along the trajectory, since these derivatives are penalized in
the cost function. When sampling in the full state space of
the system, the RRT* with a polynomial steer function would

(a) RRT* with polynomial steer function
after 120s running time.

(b) Pruned waypoints from RRT* with
straight-line steer function.

(c) Solution by our algorithm after 3s
running time.

Fig. 3: 2D demonstration of the algorithm for comparison. The natural approach of using polynomial segments directly as
a RRT* steer function (a) is computationally slow. Therefore, we run a straight-line RRT* and select waypoints from the
optimal path (b). However, the straight-line RRT* ignores dynamics and returns a path that does not match our objective
function. We therefore jointly optimize a set of polynomials through those waypoints to obtain a minimum-snap path (c).

converge to a globally optimal solution in the limit of infinite
samples, however as shown here, the paths returned prior to
convergence are clearly of lower quality than those returned
by our algorithm in a much shorter running time.

B. Performance of Polynomial Optimization

A key to the success of this trajectory planning process
is the speed and numerical stability of the joint polyno-
mial optimization method. We performed benchmark tests
on an example problem consisting of four waypoints (3
polynomial segments) chosen to represent distance and time
scales consistent with common environments for quadrotor
flight. The results are given in table II. We observe a
significant improvement in speed performing calculations in
C++ using the linear algebra library Eigen [12], especially
compared with a baseline comparison to the MATLAB QP
solver quadprog.m. This computational efficiency makes it
feasible to use this planning framework in online applications
and to use iterative path refinement methods with polynomial
optimization in the loop. While the unconstrained formula-

TABLE II: Comparison of Polynomial Optimization Times

Benchmark Problem: 3-Segment Joint Optimization
Method Solution Time (ms)
MATLAB quadprog.m 9.5
MATLAB Constrained 1.7
MATLAB Unconstrained (Dense) 2.7
C++/Eigen Constrained 0.18
C++/Eigen Unconstrained (Dense) 0.34

tion is slightly slower than the constrained formulation, its
primary benefit lies in its stability. The constrained formu-
lation encounters matrices very close to singular for joint
optimizations consisting of more than three 9th order polyno-
mials, and therefore may return inaccurate results depending
on the quality of the linear algebra solver. In contrast,
the unconstrained formulation is robust to numerical issues,
as shown in table III. To measure the robustness of both
C++ implementations, we solved a batch of 20 randomized
polynomial optimization problems for each method, since
numerical instability can be triggered by particular combina-
tions of time scales and waypoint locations. In these tests, the
locations of intermediate waypoints and the segment times
were randomly generated in the range [1,3]. Clearly, the
unconstrained optimization is much more robust to numerical
instability even for higher order polynomials. In many indoor
environments, the desired path can be accomplished in fewer
than 15 segments, which is well within the range of stability
for the unconstrained formulation. 9th order polynomials
are used because they have 10 coefficients, which is the
minimum order needed to ensure continuity of 0th through
4th derivatives at the beginning and end of every segment.
The unconstrained formulation is also stable for polynomials
of 15th order and higher. Finally, since A−1 and Q are sparse
block-diagonal and M is sparse, these problems can be easily
implemented using a sparse formulation which is roughly an
order of magnitude faster than the dense computation for
10-segment joint optimizations.

TABLE III: Numerical Stability of Optimization Techniques

Success Rates on Randomized Polynomial Optimization Problems
Formulation Polynomial Order # Segments Success

Constrained
9 3 100%
9 4 55%
9 ≥5 0%

Unconstrained
9 50+ 100%

15 50+ 100%

C. Experimental Flight Tests

We demonstrate the performance of our algorithm on a
challenging real-world planning problem by generating and
flying a trajectory through a complex indoor lab space in the
Stata Center (MIT). The environment used for these tests
was a lab space with curved, non-vertical walls, interior
columns and barriers aligned at oblique angles. An OctoMap
representation of the lab was generated using a pair of planar
laser range finders and each occupied cell was dilated with
a radius of 0.65m to leave room for the 0.35m radius of the
vehicle and a minimal allowance for error in estimation and
control. Estimation and control were performed completely
onboard the AscTec Pelican aircraft, using a Hokuyo LI-
DAR, a Microstrain IMU and an Intel Atom processor. The
trajectory returned by our algorithm is shown in figure 4,
and was generated in roughly 3s. Figure 5 shows a frame
from the onboard video taken during flight, illustrating the
complex structure of environment. We have generated many
trajectories through other interior spaces, typically requiring
only seconds of computation time, and we have flown these
trajectories successfully at speeds up to 8m/s.

Fig. 5: Onboard video frame from quadrotor flight.

V. RELATED WORK

The literature on motion planning for autonomous robots
and vehicles is extensive, and has considered both simple
holonomic systems as well as those with differential con-
straints. Randomized algorithms such as probabilistic road
maps (PRM), rapidly-exploring random trees (RRT) and
RRT* have enjoyed great success in the last decade in part

due to their simplicity and performance in high-dimensional
state spaces [13], [14], [15]. These algorithms perform the
function of filling the configuration space or state space with
random samples and connecting them to find feasible or
optimal paths from start to goal. The Euclidean distance
metric reduces the nearest-neighbor search from O(n) to
O(logn) complexity through the use of the k-d tree structure.
The performance of these algorithms on systems which do
not follow straight-line paths depends partially on the extent
to which the Euclidean distance metric remains reasonable.

Many sampling-based algorithms have also been demon-
strated for motion planning under differential constraints
[16]. These algorithms often perform very well when there
exist simple analytical techniques for obtaining a steer func-
tion from one vertex in state space to the next, combined with
an efficient calculation of the distance or cost of traversing
that path [5]. However, for general dynamical systems, the
key challenge is to find a feasible sequence of control inputs
that will drive the system from one vertex toward another
while respecting input limits and environmental constraints.
Finding these inputs requires either a solution to the two-
point boundary value problem for a system of nonlinear
ordinary differential equations, or a process of iteratively
simulating the vehicle dynamics [11]. Searching over possi-
ble control inputs is computationally costly and dramatically
reduces the performance of the algorithms. Furthermore, the
nearest vertex according to a Euclidean distance metric is
not, in general, the vertex that will yield an optimal (or even
feasible) path to a new sample in state space [17]. Never-
theless, sampling-based methods have proven successful in
real-world applications to motion planning of vehicles with
non-trivial dynamics [18].

Many successful methods exist for optimizing trajectories
between two states of a dynamical system [19], and have
been successfully applied to quadrotor control [20]. In trajec-
tory optimization, other basis functions such as a B-splines
[10] and Legendre polynomials [21] have been used to avoid
ill-conditioning, however these options preclude the efficient
optimization method presented here. Finally, our method
is not limited to quadrotor control, as there exist simple
differentially flat representations of fixed-wing aircraft [22]
and cars [23] among many other systems.

VI. CONCLUSIONS

We have presented an algorithm for generating trajectories
for the differentially flat quadrotor model through complex
real-world environments that is computationally much faster
than solving the same problems using a pure sampling ap-
proach, though at the expense global optimality. We observe
that in this domain it is infeasible to rely on the limit of
infinite sampling to produce smooth paths, and instead run
a sampling-based motion planner as a route finder, followed
by an optimization step in which the straight-line route is
translated into a smooth dynamically feasible polynomial
trajectory. We then iteratively refine the polynomial trajectory
by a time allocation scheme that naturally performs a trade
off to minimize accelerations while attempting to fly at a

Fig. 4: Automatically generated trajectory through a map of a laboratory environment in the Stata Center, MIT. The magenta
dot indicates the location of the onboard photo in figure 5.

desired velocity. This method is applicable to a large class
of differentially flat models and approximate models of fixed-
wing aircraft, automobiles and other systems.

VII. FUTURE WORK

The straight-line RRT* algorithm returns the shortest path
from start to goal, however this path may not be the most
desirable path to follow given the dynamics of the vehicle.
When navigating cluttered environments with tight corners
and narrow passageways, it is often preferable to navigate
a smooth path through open space even if it results in a
longer overall route. One extension of this work will be to
generate trajectories through all homotopy classes to obtain
the true optimal solution. Another valuable extension will
be to generalize this method to allow the movement of
waypoints to positions yielding lower cost paths.

REFERENCES

[1] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor
autonomous vehicle test environment,” Control Systems, IEEE, vol. 28,
no. 2, pp. 51 –64, april 2008.

[2] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor
helicopter trajectory tracking control,” in Proceedings of the IEEE
Conference on Decision and Control (CDC 2008), 2008.

[3] M. Hehn and D. Raffaello, “Quadrocopter trajectory generation and
control,” in International Federation of Automatic Control (IFAC),
World Congress 2011, 2011.

[4] A. Bry, A. Bachrach, and N. Roy, “State estimation for aggressive
flight in gps-denied environments using onboard sensing,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA 2012), St Paul, MN, 2012.

[5] Karaman and Frazzoli, “Optimal kinodynamic motion planning using
incremental sampling-based methods,” in IEEE Conference on Deci-
sion and Control (CDC), Atlanta, GA, December 2010.

[6] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, may 2011, pp. 2520 –2525.

[7] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control
of a quadrotor uav on se(3),” in Decision and Control (CDC), 2010
49th IEEE Conference on, dec. 2010, pp. 5420 –5425.

[8] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

[9] A. Bry, “Control, estimation, and planning algorithms for aggressive
flight using onboard sensing,” Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, 2012.

[10] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth
trajectory computation in cluttered environments,” The International
Journal of Robotics Research, 2012.

[11] Jeon, Karaman, and Frazzoli, “Anytime computation of time-optimal
off-road vehicle maneuvers using the RRT*,” in IEEE Conference on
Decision and Control (CDC), 2011.

[12] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[13] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566 –580, aug 1996.

[14] S. M. LaValle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees:
Progress and prospects,” 2000.

[15] Karaman and Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” in Robotics: Science and Systems (RSS),
Zaragoza, Spain, June 2010.

[16] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[17] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Robotics and
Automation, 2009. ICRA ’09. IEEE International Conference on, may
2009, pp. 2859 –2865.

[18] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” Control Systems Technology, IEEE Transactions on, vol. 17,
no. 5, pp. 1105 –1118, sept. 2009.

[19] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of Guidance, Control and Dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[20] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter per-
formance benchmarking using optimal control,” in Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on,
sept. 2011, pp. 5179 –5186.

[21] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, may 2012, pp. 477 –483.

[22] J. Hauser and R. Hindman, “Aggressive flight maneuvers,” in in Proc.
of the IEEE, December 1997.

[23] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness
of mechanical control systems: A catalog of prototype systems,” in
Proceedings of the 1995 ASME International Congress and Exposition,
1995.

